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Abstract—Bused on Tresca’s yield condition. the associated flow rule and linear strain hardening,
the stress distribution in the hub of a rotating shrink fit is studied. The rotating shrink fit consists
of an elastic solid disk with uniform thickness and partially plasticized hub with variable thickness.
It is assumed that the assembly is thin and that the variation of thickness is radial. The problem is
solved in closed form.

NOTATION
T O radial and ciccumferential stress components
Ty 7, initial and subsequent yicld stress respectively
£, cquivitlent plastic strain
de striin increment
I ractial displacement
Eov Young's modulus and Poisson’s ratio
" work hardening parameter
a b inner and outer radii of the hub
" a; b radius ratio
I ohy local thickness and thickness at b, respectively
n thickness parameter in b = i {rib} ”
a constant angular velocity of rotution
P ass density
A B, C D, Cp constants of integration
p superseript denoting plastic component,

r s

It is convenient to introduce the following dimensionless quantitics :
- 22
= &= ! z'l”u_ P T, - Eu 3=;Vau;h
h' b’ .

£l H
= - . =" a= o
Tytd £ N Gy a,b ! [

1. INTRODUCTION

In the design of machinery (and some structures), the problem of transmitting a4 moment
is frequently encountered. The significance of shrink fits to mechanical engincering lies in
the fact that they are capable of transmitting high moments at low production costs. A
simple computation reveals that by a purely elastic design the strength of especially the hub
material is utilized poorly. This can be improved by an elastic-plastic design. The widespread
usc of shrink fits in machinery and structural applications has gencrated considerable
interest in the application of the macroscopic theory of plasticity to engineering problems
associated with shrink fits, The problem of rotating elastic—plastic shrink fits has been
previously investigated by Kollmann (1981). His study is based on the Tresca’s yield
condition and the flow rule associated with it. A generalization of Kollmann's work for
linear strain hardening materials has been given by Gamer (1986). Furthermore, it has been
shown that hub material with an arbitrary nonlinear hardening law can be taken into
account without much numerical calculation (Gamer, 1987a,b). Gamer and Kollmann (1986)
developed a rigorous theory for a partly plasticized hub of perfectly plastic material. A hub
material with perfectly plastic behavior up to a certain plastic strain and linear strain
hardening for larger strain has been considered by Gamer (1987c¢). The case of a shrink fit
with hollow inclusion and different materials has been solved by Miiller (1989).
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Fig. L. Shrink fit geometry prior to assemblage.

In the above-mentioned papers consider the thickness of the hub as constant. The aim
of this work is to develop the analytical solution for an elastic—plastic hub with variable
thickness under the assumption of Tresca's yield condition, its associated flow rule and
lincar strain hardening. The inclusion is a circular solid disk with uniform thickness (Fig.
). In addition, it is assumed that Young's modulus and Poisson’s ratio, and the density of
the solid disk and hub material, are equal.

2. BASIC EQUATIONS AND SOLUTION

We shall confine oursclves to the problem of purely clastic behavior of the solid disk
and concentrate on the clastic-plastic behavior of the hub with variable thickness. Therefore,
for the investigation under consideration, it is assumed that the radial stress does not
become positive inside the plastic region due to rotation and the interferences.

Fora < r € z the hub material is plastic, while for 2 < r < bitis still in an elastic state.
We consider a state of plane stress and assume infinitesimal deformation. It is assumed that
the variation of thickness is radial and is symmetric with reference to the midplanc.

So long as there exist incqualitics o,, < 0 and 6, = 0, the plastic deformation of the
hub is governed by the yield condition

Ty =0, = G,. (h
If the work-hardening law is taken to be

a_v = Go(l +'7£m[) (2)

where g, is the initial tensile yield stress, i is the hardening parameter and &, is an equivalent
plastic strain. According to the flow rulc associated with Tresca's yield condition

def, +defy =0, del. = 0. (3)
Consideration of the equivalence of the increment of plastic work yields
ey = Eln- (4)

For slowly varying angular velocity, the equation of motion
d 22
i (hro,,)—how = —hpw*r* &)

and geometric relations



Stress distribution in rotating shrink tit 9l

Eop = — o Egy = (6)

hold in the entire hub irrespective of material behavior. Total strains are decomposed into
elastic and plastic components. The stress-strain relations are:

|
&, = E(O'"“"aw)+85 (N
! ( )+l 8
:ml = - o v e el .
€ E o o fa (8)

Since we restrict ourselves to small strains, ¢, and g, must satisfy the compatibility equation

d
&r (rég) = &,. 9

Substituting the strains &, and &, in the compatibility equation (9) and using (1)-(5). we
obtain

Jdia, + <1+ h') da,, N (SN FAW ¥ + hooh
dr- r h r dr + L+ ) h r h h- e

2a, 1+vH -
= —-13 - rs
H+ ( * //+|>’"" ri. (0

which is the dilferential equation expressed in terms of the radial stress, where H = noo/E

and a prime denotes differentiation with respect to r.
It the thickness of the hub is assumed to vary wlong the radius in the form

h=hol") 1
b=l ) (ry

and we substitute the thickness function (11) into eqn (10), the general solution of this
equation is given by

20, Kpw'r?
g, =Ar'v+Br'r— - — - e 12
nkK, 8(H+1)—nk (12)
and using the equilibrium cquation, the circumferential stress is found to be
2l —n)a 4+(1+30)H .
Toun = ’nl-""l'+’n:B/J“‘— ( )'"" [ ( )'l °r- (13)

i - e . pu
nk, 8(H+1)—nK
where

f = Mn=2F JAent H (i + D/(H+ D)}

tor =t 41 =1, tgs=titl=n, Ko=2+H(1+v), K=4+HQ3+v).

Combining the total circumferential strain-radial displacement relation and the total cir-
cumferential strain relation (8). and using (2) and (4). one obtains an expression for the
radial displacement :
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1
Eu = [am, —va, + H (0, ~a,,):]r. (13)

Inserting the stresses according to (12) and (13). and using (1). the preceding expression
results in

i, — sy~ 0 l_' 2
Eu= {': L +l—-v] Ar"+[ T —\'] Br':+ (L(*.“L) (1 - “)
w- wo A() n

“"")KO 2.2
- g’m—;ﬁl)_-nkp(.) r }r (IS)

where w® = H'H+ 1.
In the elastic region, : < r < b: the stresses and radial displacement are well known
(see. for example. Timoshenko and Goodier, 1970) to be

(3+v)pm:r3

= x+n— 1} LR I A A 1
a, =Cr + Dr 8 n(3+v) (16)
(1 + 3Ipw’r’
S—n{3+v)

(1 - \'Z)I)ru!r:
S—-n(d+v) r

Ty = Car**" V4 Dfirl v N (17)

[:.” = {(.(1‘_‘_)',10'1 l+l)({‘—'\')l'/,‘" t_ (Ix)

where
L= {-nt \/n"+4(l+nv)].

In the elastic inclusion. 0 < r < «a:; the stresses and radial displucement are given by

34y,
G, =Cy— ( +‘)pm'r' (19)
8
[+3)
O = Cy— ( -: ‘)p(u'r' (20)
l' : Ty
Ell = [(' —_ \')Cl — (.8 ‘H),,)(”-r-]r. (2')

3. THE ELASTIC-PLASTIC HUB

The above general expressions for stresses and displacements contain the unknowns
constants A, B, C, D and C,. An additional unknown is the radius = of the elastic—plastic
interface. For the determination of these six unknowns there are six conditions available.
The most convenient ones are: continuity of radial stress and displacement at r =z,
continuity of radial stress r = a: the radial stress at the outer surface r = b vanishes and at
r=au"™?—y*"* =/ and, finally the yicld condition in eqn (1) must be satisfied at r = -.
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, @
2 —y)Ey 2
+2(1 -8 ]8_"(3+v)} (24)
5 = ﬂ,‘,!),mw = l l l z R I
- 0'“/7"“;; - [(/]'__7”5:'[{“} !.I_(&_ l):xbn ll ‘[(1—' )(- +\)5

.2 Q*
+2"“"§']x;,‘,(3+v>} *

- C - " 2 KQy* 3
C, = = Ag'h + By': — ¢ +v

- Q% 2
oy nky, "8+ -nk T g Y (26)

and the nondimensional elastic-plastic interface radius ¢ can be found from the following
cquation

o { 1 [— (1 —v [ nkQq* :”
[(q) (,,)] (ty=n)(t:=n) L& asdET H=ak)
;

S

(q/8)  (q/d)" 21-v)Q°8 (1+v) 2 KQ¢E?
””*”[ ) ][S(HH) nK K, ]}"717(;°8(H+1)—n1<
l {( oz 1 2(l—v)n2¢=] (3+V)(a—ﬂ)ﬂzé’°*"0}
T (=D (a— §h=e T 8=n(G+v) | 8—n(3+v)
(3+V)Q“=2
—n(3+v) @7)

where g = a+n—1, o= f+n-1.

4. THE FULLY PLASTIC HUB

In the particular case for & = | the hub becomes fully plastic. 4 and B in eqns (12)-
(15). and C, can be determined by the following conditions. Making use of the geometric
condition u"®(a) — u**(a) = I, the continuity of radial stressatr=aandatr=ba, =0,
the unknowns are found to be:
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i A w? {[. | [I + 2(13——n)q’~‘]
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B we .o 2ty —n)g"
_ = P - N | —yv4 ——pmes
oob™'r (t,—mq = —n)g" Ko nw-

W =v)ng™+ ! (1 )'] RO } (29)
— —_— " - - — | S ——— -
a( "q Wi T 8(H+1t)—nk

=]

Y o 2 KQy: (G+v) . .
== Jg" + Byt - — o — . Qg-. 30
S N 777 i Ty G S (30)

5. NUMERICAL RESULTS AND DISCUSSION

[t can be seen from the present analysis that the elastic-plastic interface radius =
depends on the hardening # : the stresses and radiat displacement in the outer elastic region
are influenced by the occurrence of hardening. However, it is well known (Gamer, 1986
Gamer, 1987a.b.c) that the occurrence of hardening does not influence the elastic-plastic
interfuce radius - and the outer clastic region of the hub with uniform thickness.

The derivation of stress and displacement in the plastic region of the hub is based on
the yield condition (1). From the work of the Gamer and Kollmann (1986) it is known that
for an elastic-perfectly plastic material the stress a,, can change its sign in the plastic region
of the hub. By rotation, the level of both stresses is raised and, at a certain angular velocity,
the radial stress at the clastic plastic border vanishes.

From (12), (22) and (23) there follows

Wl 7= _“.“””“’[(‘I/Of’_“I/Q"'J_ 2 [(f/)"_(f/)”]
’ K() Ku Hy—n 1y—n NK(,\\‘: C C

oo (’//,“ 1y (( "/V)I_. l—l’ o,
= {2(1 -v)(/l+l)g-[(”f)n - I"n]+ R
2= [

LN (e (4 R
*"(J K) - () ]} s(H+Hy=nk OV

where

l: - ’|
fy= ot

(1‘,'—‘—711)-(12 —n)’

It can be seen from (31) whether the condition «,, < 0 holds for all possible combinations
of geometric and material data.

Numerical results are presented graphically showing the influence of hardening par-
ameter on the distribution stress in a fully plasticized hub, for ¢ = 0.5, Q7 = l.l andn = 0.5.
The Poisson ratio, v, equals 0.3. Figure 2 shows the stresses distribution in the fully
plasticized hub for /f = 0.5 and H = 2. Figure 3 shows the radial displacement distribution
in the fully plasticized hub for H = 0.5and H = 2.

The corresponding interferences from (27) are [; = 3.1921478 and [, = 3.1614821,
respectively.

To avoid the appearance of a special plastic region at the outer edge of the fully plastic
hub. the radial stress must not be allowed to become positive with increasing angular
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Fig. 2. Stress distribution in a fully plasticized hub.
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velocity. This is guaranteed if the slope dd,,/dx at x = | is smaller than or cqual to zcro.
From (12), (28) and (29) there follows :

wi(t, - l:)[l-— (ll:’-“v)‘]

l_ 2 M
= {(2—fz)(h = = Q=) (0 —«:)mrw-}

2
e - L y — 5
+ "k, (2000 =m)g" — 1, (22 —m)g"?]
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Fig. 3. Radial displacement distribution in a fully plasticized hub.

1.0

(32)



96 U. GUveN
REFERENCES

Gamer, U. (1986). The rotating elastic-plastic shrink fit with hardening. dcra Mech. 61, 13-27.

Gamer, U. (1987a). The shrink fit with nonlinearly hardening elastic-plastic hub. Trans. ASME, J. Appl. Mech.
84, 474-4176.

Gamer, U. (1987b). Die teilplastizierte Nabe eines PreBverbandes. ZA WM 67, 65-66.

Gamer, U. (1987c). The shrink fit with elastic-plastic hub exhibiting constant yield stress followed by hardening.
Int. J. Solids Structures 23, 1219-1224.

Gamer, U. and Kollmann, F. G. (1986). A theory of rotating elasto-plastic shrink fits. Ing.-Arch. 56, 254-264,

Kollmann, F. G. (1981). Rotating elasto-plastic interference fits. Trans. ASME. J. Mech. Des. 103, 61-66.

Miiller, U. (1989). Der rotierende elastisch~plastische PreBverband mit hohlem Innenteil. Forsch. Ing.-Wes.
Fortschr.-Berichte VDI, Reihe I, Nr. 175, VDI. Disseldorf.

Timoshenko. S. P. and Goodier, J. N. (1970). Theory of Elusticity. McGraw-Hill, New York.



