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Abstract-Based on Tresca's yield conuition, the associated flow rule and linear strain hardening.
the stress distribution in th.: hub of a rotating shrink fit is studi.:u. The rotating shrink fit consists
of an elastic solid disk with uniform thickness and partially plasticized hub with variable thickness.
It is assumed that the assembly is thin and that the variation of thickness is radial. The problem is
solved in closed form.
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I. INTRODUCTION

In the design of machinery (and some structures), the problem of transmitting a moment
is frequently encountered. The signilicance of shrink fits to mechanic.tl engineering lies in
the fact that they are capable of transmitting high moments at low production costs. A
simple computation reveals that by a purely elastic design the strength ofespecially the hub
material is utilized poorly, This can be improved by an elastic-plastic design, The widespread
usc of shrink fits in machinery and structural applications has generated considerable
interest in the application of the macroscopic theory of plasticity to engineering problems
associated with shrink tits. The problem of rotating elastic-plastic shrink fits has been
previously investigated by Kollmann (I 98\), His study is based on the Tresca's yield
condition and the flow rule associated with it. A generalization of Kollmann's work for
linear strain hardening materials has been given by Gamer (1986). Furthermore. it has been
shown that hub material with an arbitrary nonlinear hardening law can be taken into
account without much numerical calculation (Gamer, 1987a.b). Gamer and Kollmann (1986)
developed a rigorous theory for a partly plasticized hub of perfectly plastic material. A hub
material with perfectly plastic behavior up to a certain plastic strain and linear strain
hardening for larger strain has been considered by Gamer (I 987c). The case of a shrink fit
with hollow inclusion and different materials has been solved by Mtiller (1989).
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Fig. I. Shrink fit geometry prior to assemblage.

In the above-mentioned papers consider the thickness of the hub as constant. The aim
of this work is to develop the analytical solution for an elastic-plastic hub with variable
thickness under the assumption of Tresca's yield condition, its associated flow rule and
linear strain hardening. The inclusion is a circular solid disk with uniform thickness (Fig.
I). In addition, it is assumed that Young's modulus and Poisson's ratio, and the density of
the solid disk and hub material. are equal.

1. IlASIC EQUATIONS AND SOLUTION

We shall confine ourselves to the problem of purely elastic behavior of the solid disk
and concentrate on the clastic-plastic behavior of the hub with variable thickness. Therefore,
for the investigation under consideration, it is assumed that the radial stress does not
become positive inside the plastic region due to rotation and the interferences.

For (/ ~ r ~ : the hub material is plastic. while for : ~ r ~ h it is still in an elastic state.
We consider a state of plane stress and assume infinitesimal deformation. It is assumed that
the variation of thickness is radial and is symmetric with n:ference to the midplane.

So long as there exist inequalities a" ~ 0 and a/HI ~ 0, the plastic deformation of the
hub is governed by the yield condition

(1'/1/1 - (1'" = (1' y •

If the work-hardening law is taken to be

( I)

(2)

where all is the initial tensile yield stress. t1 is the hardening parameter and e,<{ is an equivalent
plastic strain. According to the flow rule associated with Tresc.I's yield condition

dl;t +deRn = 0, dr.f: = O.

Consideration of the equivalence of the increment of plastic work yields

For slowly varying angular velocity. the equation of motion

d , ,
dr (hra,,) - hallll = - hpa)""

and geometric relations

(3)

(4)

(5)



Stress distribution in rotating shrink tit 91

(6)

hold in the entire hub irrespective of material behavior. Total strains are decomposed into
elastic and plastic components. The stress-strain relations are:

(7)

(8)

Since we restrict ourselves to small strains. t:" and e"" must satisfy the compatibility equation

d
-i" (n",,) = err'
(I'

(9)

Substituting the strains t:" and 1:"" in the compatibility equation (9) and using (I }-(5). we
obtain

,d:rr" ( ".) dlT" [( 1+\'")'" (It "'.:)],-., + 3+1' I' + 2+ . +1'- --, rtr"
d,- "dr I +"" "".

21T" ( I +VII) "= - 3+ I'll} . ,- •
11+1 1/+1

( 10)

which is the dil1'erential equation expressed in terms of the radial stress. where 11 = 1/lTo/E
and a prime denotes dilrerentiation with respect to r.

II' the thick ness of the hub is assullled to vary along the radius in the form

(I') ""="" h •
( II )

and we substitute the thickness function (II) into eqn (10). the general solution of this
equation is given by

Kp(!)~r~

8(11+ I)-11K'
( 12)

and using the equilibrium equation. the cin:uml'erential stress is found to be

2( I -1I)rrn [4 +(I +3L')fl] "
(T"., = 11I1.·lr'I+/II~Brl,- !' - v II I" "I'or,-

lin II o( + )-lin

where

IU = H"-2+ j4+-,~1+4'~(I/~+-I)/(lI+i')}

10 ,=/,+1-11. 11I~=11+1-1l. Kn =2+il(I+\·). K=4+fl(3+v).

(13 )

Combining the total circumferential strain-r'ldial displacement relation and the total cir
cumferential strain relation (8). and using (2) and (4). onc obtains an expression for the
radi'l( displacement:
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(14)

Inserting the stresses according to (12) and (13). and using (n. the preceding expression
results in

{[
tl-n ] [t,-n ] 117,,(1-1')( 2)Ell = -,- + I-\' Ar" + ._'~,- + (- I' Br'+--~- 1--

11'- 11'- A" n

where lI'z =: H,' H+ I.
In the elastic region. :: :s:; r :s:; b; the stresses and radial displacement are well known

(see. for example. Timoshenko and Goodier. 1970) to be

( 16)

froo =: elr' ", 1 + Oflr" ''I I
(I + 3r)pw Zr1

X-II(3+\,)
(J 7)

where

1.[1= H-II± ,,/111+4(1 + 111') j,

(I X)

In thc clastic indusion. 0 :s:; r :s:; {f; the strcsscs and radial displaccment arc given by

• (3+1')
a" =: ( 1- /I/!r,.-

X

[
(I - 1,1) , 'J

Ell =: (1-1')C'-"'8 fI(JJ-"- r.

( (9)

(20)

(21 )

3. THE ELASTIC-PLASTIC HUB

The above general expressions for stresses and displacements contain the unknowns
constants A. B. C, D and C,. An additional unknown is the radius:: of the elastic-plastic
interface. For the determination of these six unknowns there are six conditions available.
The most convenient ones are: continuity of radial stress and displacement at r =: =.
continuity of radial stress r =: a: the radial stress at the outer surface r =b vanishes and at
r =: a II

hub
- Udl<k = I. and. finally the yield condition in eqn (I) must be satisfied at r = =.
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(22)

(23)

+ 2( I - \')¢~l-~--} (24)
8 -/1(3 + v)

.... _') nz
} ....+.;(1-\'),;;- - (.;5)

H-/1(3 + v)

C I - - 2 Kn ~e/ 3+ v , ,
('I = = Ael" + Bel" - - + n-el"

0"" 11K" X(II + I) -11K X •
(26)

and the nondimensional clastic-plastic interface radius ~ can be found from the following
cljuation:

m(~~J]k!~~:;=-;,)[1- (1 - ,,) U; + 4i8ih~i~"KJ]

+(H+ I)[_(q_/~_)'I - _(q_/~_)':][ 2(1-\')nz~~ __(I_+_\')]} __2 K_n_2~~2_
12-n II-n 8(H+I)-nK Ko nKo 8(H+I)-nK

I {-fJ -1 [ 2(I-V)n~~~] (3+v)(!X-fJ)n2~Jo+fJo}
= (fJ_I)~~o_(:x_I)~JO (,;; 0_<; 0) 1- 8-n(3+\') - 8-/l(3+v)

(3 + v)n~~~
---- (27)

8-n{3+v)

where!Xo = !X+n-I. Po = P+/I-1.

4. TilE FULLY PLASTIC HUB

In the particular case for ~ = I the hub becomes fully plastic. A and 8 in eqns (12)
(15). and C I can be determined by the following conditions. Making use of the geometric
condition uhub(a) - ud"k(a) = I. the continuity of radial stress at r = a and at r = b 0"" = O.
the unknowns are found to be:
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r
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A = (Joh-I, = (t
l
-n)q'l - (t~ -n)q': 1- K~ I-I'+~I~'~-

[
,I J Kn' }- 1( I - \' )llCr + --, (t I - n)c/ 1 .- •

\I" 8(H + I) - n1\

5. NUMERICAL RESULTS AND DISCUSSION

(28)

(29)

(30)

It can be seen from the present analysis that the elastic-plastic interface radius =
depends on the hardening 'f: the stresses and radial displacement in the outer elastic region
arc influenced by the on:urrence of hardening. However. it is well known (Gamcr. 1986:
Gamcr. 19f\7a,h.c) that the occurrencc of hardening does not influence thc elastic-plastic
interface radius =and the outer elastic region of the huh with uniform thickness.

The derivation of stress and displacement in the plastic region of the huh is based on
the yield wndition (I). From the work of the Gamer and Kollmann ( 19X6) it is known that
for an e1astil:-perfel:tly plastil: material the stress (T" can change its sign in the plastic region
of the huh. By rotation, thl: level of hoth stresses is raised and. at a l:ertain angular velol:ity.
the radial stress at the elastil: plastil: hordl:r vanishes.

From (12), (22) and (23) there follows

{ [«(/1.)/1 «(/'.)/'J I \.
_ 1(1 ')(11 I)·~l-<' ,<, - + - L' ~- _ -\ + I, - I/lfll\.tf

I~-" 11 -" 4

where

It C.1l1 bc secn from (31) whether the condition (T" < 0 holds for all possible combinations
of geometric and material d.tta.

Numerical results arc presented graphically showing the influence of hardening par
ameter on the distribution stress in a fully plasticized hub, for tf = 0.5, n~ = 1,1 and n = 0.5.
The Poisson ratio, I', equals 0.3. Figure 2 shows the stresses distribution in the fully
plasticized hub for II = 0.5 and H = 2. Figure 3 shows the r'ldial displacement distribution
in the fully plasticized hub for H = 0.5 and H = 1.

The corresponding interfcrences from (17) arc Tr = 3.1911478 and Tr = 3.1614821,
respectively.

To avoid the appearance of a special plastic region at the outcr edge of the fully plastic
hub. the radial stress must not be allowed to become positivc with increasing angular
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Fig. 2. Strcss dislril"lution in a rUlly plasticizcd hub.

velocity. This is guamnteed if the slope da,,/dx at x = I is smalkr than or c4ual to zero.
From (12). (28) 'lnd (29) there follows:

KO l

X -- -- _...- (32)
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Fig. 3. Radial displacement distribution in a rully plasticized hub.
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